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Abstract

Understanding the mechanisms of spatial population dynamics is crucial for the successful

management of exploited species and ecosystems. However, the underlying mechanisms

of spatial distribution are generally complex due to the concurrent forcing of both density-

dependent species interactions and density-independent environmental factors. Despite the

high economic value and central ecological importance of cod in the Baltic Sea, the drivers

of its spatio-temporal population dynamics have not been analytically investigated so far. In

this paper, we used an extensive trawl survey dataset in combination with environmental

data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during

the past three decades using Generalized Additive Models. The results showed that adult

cod distribution was mainly affected by cod population size, and to a minor degree by small-

scale hydrological factors and the extent of suitable reproductive areas. As population size

decreases, the cod population concentrates to the southern part of the Baltic Sea, where

the preferred more marine environment conditions are encountered. Using the fitted models,

we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial

occupation was developed. Our study will contribute to the management and conservation

of this important resource and of the ecosystem where it occurs, by showing the forces

shaping its spatial distribution and therefore the potential response of the population to

future exploitation and environmental changes.

Introduction

Understanding the spatial dynamics of animal populations and using this information in bio-

logical conservation and resource management represents one of the new frontiers in marine
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ecology. Changes in spatial distribution and migration patterns have been reported in aquatic

and terrestrial ecosystems, both at small and large spatial scales [1, 2]. These changes have

been attributed to climate effects [3–5], biological interactions such as density-dependent

responses or predator-prey dynamics [6–9] and human pressures including fishery or hunting

[10–13]. Often these causes act simultaneously, and most likely in interaction [14], to trigger

large re-location of natural populations.

It is well demonstrated that the abundance and distribution of marine fish populations is

affected by both density-dependent (or demographic) and density-independent (or environ-

mental) factors [15–22]. Their effects in isolation or through interactions can also lead to large

variations in the spatial distribution of fish populations [23–24]. For instance, expansion of the

distribution towards marginal habitats and, at low densities, contraction to the most suitable

habitats are known regulatory mechanisms in fish populations to avoid unfavourable condi-

tions, release competition and optimise the use of resources and habitats, as predicted by the

ideal free distribution theory [25].

Beside its ecological significance, understanding the processes shaping the spatial distribu-

tion of fish populations is crucial for their conservation. In particular, the knowledge of what

determines the spatial distribution of exploited populations could provide valid information to

regulate the fishery [26] and predict the effects of habitat loss and climate change. Moreover,

habitat occupation is a key indicator of species and community status and its quantification is

therefore needed for a full implementation of an ecosystem approach to the management of

human activities [27].

The Baltic Sea cod (Gadus morhua) is the main piscivorous fish of the open Baltic Sea and,

as such, plays a crucial structural and functional role in the Baltic ecosystem [28–30]. During

the past three decades, in fact, large variations in the abundance and distribution of the Eastern

Baltic cod population (hereafter referred to as Baltic cod, Fig 1) have caused top-down driven

multi-level changes in both open sea and coastal food webs [28, 29, 31, 32]. Fisheries statistics

show large spatial variations in cod landings over time in the Baltic Sea during the past decades

(Fig 2), suggesting that the distribution of the cod population has also varied considerably.

Although the causes of temporal variation in the Baltic cod population have been studied in

depth [33, 34], no analytical investigation has been performed on the causes of the long-term

changes in cod spatial distribution.

Here we used, for the first time, a unique extensive dataset of data collected during interna-

tional bottom trawl surveys in the last three decades by several countries bordering the Baltic

Sea. The aim of our study was to investigate through statistical modelling the effects of density-

dependent processes (i.e. mediated by changes in population abundance) and hydrological

conditions on the spatio-temporal dynamics of cod in the Baltic Sea. The model adopted was

also used to predict the cod population distribution in different periods, and an index of the

area occupied was calculated as a novel indicator of the status of the cod population.

Materials and methods

Biological and hydrological data

We used cod standardized catch per unit of effort (CPUE, catch in numbers per hour trawling)

collected during international trawling surveys by the countries surrounding the Baltic Sea

between 1982–2012 (Fig 1, S1 Fig). The surveys have been coordinated as Baltic International

Trawl Survey (BITS) by the International Council for the Exploration of the Sea (ICES) since

1998 [35], but a major shift in the sampling gear occurred in 2000 when national trawls were

replaced by a common standard TV-3 trawl used by all countries. Conversion factors among

national and TV-3 trawl types were estimated to standardise CPUE by application of a

Spatio-temporal dynamics of Baltic Sea cod
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machine learning algorithm based on generalized regression neural networks [36]. The algo-

rithm was trained on the 2000–2009 dataset and tested on the 1998–1999 dataset to account

for year, month, country, geographical position, and depth related differences in trawls’ catch-

ing efficiencies by cod age group (see S1 Text for more details on trawl standardisation). Each

record contains the haul location information (latitude and longitude), trawling depth and the

CPUE of cod by age-class (ages 1 to 10). We constrained our analyses to the period 1982–2009

because of the lack of fine-scale hydrological data after this year (see below). We focused on

the adult component of the cod population (ages 3 and above) sampled between January to

March. The surveys cover the major area of occurrence of the Eastern Baltic cod population,

i.e. the ICES Subdivisions (SDs) 25–28 (Fig 1). The time series of cod population size was from

the latest accepted analytical stock assessment [37].

All the cod CPUE observations in time and space were matched to modelled hydrological

data. Monthly mean oxygen and salinity data were interpolated from model results of the

Swedish Coastal and Ocean Biogeochemical model coupled to the Rossby Centre Ocean

Fig 1. Study area and location of cod trawl hauls. The map (made with Natural Earth) shows ICES

Subdivisions (SDs, separated by solid black lines), and the ICES statistical rectangles (thin dotted lines).

Bathymetry is shown in shades of blue. The Eastern Baltic cod stock occurs in the area covered by SDs 25–

32 (SD 31, covering the Bothnian Bay, is not shown).

doi:10.1371/journal.pone.0172004.g001
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circulation model (RCO-SCOBI) [38, 39, S2 and S3 Figs]. RCO-SCOBI is a three-dimensional

model of the Baltic Sea with a horizontal grid resolution of about 3.7 km (2 nautical miles) and

with 83 vertical levels with layer thicknesses of 3 m. The physical and biogeochemical sub-

models describe the dynamics of water temperature, salinity, currents, sea level, sea ice, but

also nitrate, ammonium, phosphate, phytoplankton, zooplankton, detritus and oxygen.

RCO-SCOBI is forced with three-hourly atmospheric data from a regionalized re-analysis sim-

ulation [40] and with monthly river runoff and nutrient load data [39] for the period 1961–

2007. In earlier studies the model was successfully used to study past climate variability (e.g.

see [41]) and future projections [42]. The original model output was aggregated on the coarser

ICES rectangles, but the vertical resolution of 3 meters remained unchanged. Each cod CPUE

observation was matched to the average hydrological conditions within the same ICES rectan-

gle, at the depth and month of trawling. We used salinity and oxygen because of their recog-

nized importance as driver of the Baltic Sea biota, especially in relation to cod [43]. We used a

relatively coarser spatial resolution of hydrological conditions compared to the horizontal grid

resolution of the hydrological model because model results were only validated at the sub-

basin scale due to the lack of observations at high resolution below the sea surface. In addition,

no assimilation of observations into the model was applied and the chaotic behavior of the

ocean’s mesoscale does not allow a one-to-one comparison with observations in any case. To

estimate how representative the hydrological parameters salinity and oxygen averaged within

each ICES rectangle are for all the locations of the model grid within each ICES rectangle, we

calculated the spatial variance at each depth for different rectangles that vary between 2 times 2

and 15 times 15 model grid boxes. The spatial variances were calculated every second day and

then averaged for a 30-year period between 1966 and 1995. As expected, we found a moderate

increase of the spatial variance averaged for the entire Baltic Sea with the size of the rectangles

Fig 2. Cod commercial landings. (a) Commercial landings in the ICES Subdivisions (SDs) 25–29 (excluding SD 28.1). The black

line is the ratio of landings in the northern SDs (SD 27–29) to the total landings (SDs 25–29, excluding SD 28.1). (b) Commercial

landings in SDs 28.1 (Gulf of Riga), SD 30 (Gulf of Finland) and SD 32 (Bothnian Sea). Landings in SD 31 are not presented

because of the very small amount.

doi:10.1371/journal.pone.0172004.g002
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but also an approximate saturation of variances for rectangles larger than about 8 times 8

model grid boxes. Moreover, spatial variances at all spatial scales within ICES rectangles seem

to be much smaller than temporal variances at seasonal to decadal time scales. Hence, we

assume that there is no real added value for the modeling of cod distributions by using infor-

mation from hydrological parameters at the high horizontal resolution of the model grid. Fur-

ther investigations of the impact of spatial variability at various scales on cod distributions are

out of the scope of the present publication.

To investigate the potential relation between cod distribution and spatio-temporal varia-

tions in recruitment, we used time-series of the cod reproductive volume by SD. The repro-

ductive volume (RV) is defined as the volume of water with a salinity > 11 psu and an oxygen

concentration > 2 mL L-1, which are recognized as suitable hydrographic conditions for the

development of cod eggs [44]. The reproductive volume is acknowledged to be a key driver of

cod recruitment success in the Baltic Sea [45]. In this study RV was used as predictor of cod

CPUE in each SD, with the hypothesis that cod adults would tend to remain close to the areas

where they were born, i.e. have a higher probability to stay in the same SD than to spread into

other SDs. This accounted for the hypothesis that the spatial expansion/contractions of the cod

population are driven by changes in the location of suitable spawning areas [46].

Statistical modeling

In our model, three spatial scales are included, tackling different mechanisms potentially capa-

ble to shape the distribution of the adult fish: the small scale (hydrological conditions by ICES

rectangle) indicates the habitat preferences/requirements of fish, the basin scale (reproductive

volume by SD) investigates the effect of the extent and location of suitable spawning area on

the future distribution of the adults born in those areas, while the regional scale (total popula-

tion size in the Baltic Sea) analyses the density-dependent effect investigating the demographic

effect of population size on the fish distribution over the whole central Baltic Sea.

Regression methods are the main approaches to analyze the relationships between species

abundance (or other response variables) and their environment [47]. Considering the versatil-

ity and flexibility in modeling the effects of density-dependent and density-independent vari-

ables [5, 17, 20, 22, 48], we used Generalized Additive Models (GAMs) [49, 50]. GAMs assume

that the response variable follows some specific statistical distribution, such as Gaussian, Pois-

son, etc. However, biological data often violate this assumption, and issues like zero-inflation

(more zeroes than the specified distribution suggests) and over-dispersion (variance exceeds

the mean) are frequently encountered [51–53]. In our case, most of the trawl data were col-

lected during years of low cod population size and for this reason, we used the quasi-Poisson

distribution, which gives higher weights to larger CPUEs and at the same time is able to handle

zero-inflation. The variance of a variable Y that follows a quasi-Poisson distribution should be

a linear function of the mean (expected value) of Y: Var(Y) = θ�E(Y), where θ (> 1) is the dis-

persion parameter [54].

The choice of predictors used in this study was based on information from official fisheries

landings and acknowledged ecological processes driving cod dynamics (see also Biological and

hydrological data, above). Landing statistics have shown that when cod population size was

high, as in the late 1970s to the early 1980, large amounts of cod were landed in the northern

areas of the Baltic Sea. On the contrary, during periods of low population size, most of the

landings were from the southern part of the Baltic Sea (Fig 2). This suggests a geographical

expansion and contraction of the population at high respective low population sizes. There-

fore, we used population size from stock assessment estimates [37] as density-dependent

predictor of cod CPUEs. Salinity and oxygen are the major hydrological factors known to

Spatio-temporal dynamics of Baltic Sea cod
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influence cod abundance and distribution [55], with high values being physiologically favor-

able for this marine species [43]. Moreover, variations in cod reproductive volume (RV) have

been acknowledged as major driving forces of cod recruitment [44]. Trawl haul depth was also

included in the models in accordance to previous studies showing the preference of cod for

certain depths [55]. To test different hypotheses of density-dependence and density-indepen-

dence, we built the following models investigating the spatio-temporal dynamics of the adult

component of the cod population (CPUE at ages 3+):

mod1 : f ðCPUEÞ
¼ aþ s1ðlon; latÞ þ s2ðlon; latÞ � populationþ s3ðoxy; salÞ þ s4ðdepthÞ þ s5ðRV Þ þ ε

mod2 : f ðCPUEÞ ¼ aþ s1ðlon; latÞ þ b � ðpopulationÞ þ s3ðoxy; salÞ þ s4ðdepthÞ þ s5ðRV Þ þ ε

mod3 : f ðCPUEÞ ¼ aþ s1ðlon; latÞ þ s2ðlon; latÞ � populationþ s3ðdepthÞ þ s4ðRV Þ þ ε

mod4 : f ðCPUEÞ ¼ aþ s1ðlon; latÞ þ s2ðlon; latÞ � population þ s3ðoxy; salÞ þ s4ðdepthÞ þ ε

mod5 : f ðCPUEÞ ¼ aþ s1ðlon; latÞ þ s2ðlon; latÞ � populationþ s3ðdepthÞ þ ε

mod6 : f ðCPUEÞ ¼ aþ s1ðlon; latÞ þ s2ðoxy; salÞ þ s3ðdepthÞ þ ε

mod7 : f ðCPUEÞ ¼ aþ s1ðlon; latÞ þ s2ðoxyÞ þ s3ðsalÞ þ s4ðdepthÞ þ ε

where f is the log-link function for quasi-Poisson distribution, α the model intercept, β the

parametric coefficient and s1-s5 the smoothing functions with no prior constraint on the maxi-

mum number of knots. lon, lat, oxy, sal and depth are the longitude, latitude, oxygen, salinity

and depth at each sampling location, respectively, RV is the reproductive volume by SD (lagged

3 years back to match with the most abundant age-class included in the adult CPUE, i.e. age 3)

and population the total cod population size (ages 3+) at a specific year. ε is the error term

whose variance should have, in the case of quasi-Poisson distribution, a positive linear rela-

tionship with CPUE.

The hypothesis of density-dependency is tested with the two alternative formulations pre-

sented by model.1 and model.2 where the linear effect of cod population size is assumed to be

spatially-variable by the term s(lon, lat) �population [20, 22] and spatially-invariant by the term

β�population, respectively. Models.3-5 test for the inclusion of the different environmental var-

iables into models with spatial density-dependence. Model.6 and model.7 assume that only

density-independent environmental variables affect cod spatial dynamics and they are used

to test for the interacting and additive effects of oxygen and salinity, respectively. All models

assume that the response variable follows a quasi-Poisson distribution, which means the vari-

ance of the model residuals should have a linear relationship with the fitted values. Model

selection was based on the analysis of deviance explained and minimization of the generalized

cross validation (GCV, [56]). In addition, the predictive power of each model was compared

using a bootstrap approach based on the genuine cross validation score (gCV). Each model

was fitted on 80% of the data, randomly selected, and the average squared prediction error was

calculated on the data points removed. This procedure was repeated 1000 times for each

model and the gCV was calculated as the mean of this error statistic [57]. The best model was

checked for violation from the main model assumptions including spatial auto-correlations in

the model residuals (S5 Fig). All analyses were conducted in R (www.r-project.org) using the

mgcv library [50].

Spatio-temporal dynamics of Baltic Sea cod
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Results

The model selection procedure showed that model.1 performed better than the other models,

indicating that cod spatio-temporal dynamics during the past thirty years were driven by both

spatial density-dependence and hydrographic conditions (Table 1). The combination of both

better statistics in comparison to model.2 and estimation of a statistically significant spatially-

variable effect of population size (Fig 3b) support the hypothesis that a spatially heterogeneous

Table 1. Model selection results. Intercept (A), linear coefficient (β)and estimated degrees of freedom of smoothing terms are shown for all the models.

The deviance explained (dev.expl), the generalized cross validation (GCV) and genuine cross validation (gCV) scores are also indicated for each model. All

the terms of each model are significant (p-value < 0.001).

Model Predictors dev.expl GCV gCV

A s(lon,lat) s(lon, lat) � population β�(population) s(oxy, sal) s(oxy) + s(sal) s(depth) s(RV)

Model.1 4.2 26.1 18.4 21.9 6.3 8.5 44.0 252.6 356.1

Model.2 4.3 28.1 2.4 25.4 6.1 8.8 41.0 264.5 362.3

Model.3 4.2 26.1 21.2 6.2 8.5 41.7 260.4 359.0

Model.4 4.3 26.1 18.6 21.2 6.3 42.7 257.2 357.7

Model.5 4.2 26.0 21.1 6.2 40.6 264.1 359.0

Model.6 5.0 28.0 26.8 6.3 27.3 324.7 390.9

Model.7 5.0 28.2 6.5; 8.9 6.6 25.3 331.5 394.0

doi:10.1371/journal.pone.0172004.t001

Fig 3. Results of the best model. (a) effect of spatial location. (b) spatial effect of cod population size. (c) interactive effects of

salinity and oxygen. (d) effect of depth. (e) effect of the reproductive volume. (f) estimated variance-to-mean relationship (solid

line, slope equals to 268). The circles are averaged squared residuals in each category (e.g. 0 < E(Y) < 2, 2 < E(Y) < 4 and so on).

doi:10.1371/journal.pone.0172004.g003

Spatio-temporal dynamics of Baltic Sea cod
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density-dependent process contribute to explain cod CPUE. Moreover, all the model statistics

considered favour model.6 in comparison to model.7 suggesting an interacting rather than

additive effect of oxygen and salinity on the cod local densities.

The results of model.1 (best model) are shown in Fig 3. The term s(lon, lat) shows the iso-

lated effect of spatial location on cod CPUE. High CPUEs appeared in the south (especially SD

25) and low CPUEs in the north of the study area (Fig 3a). The effect of population size has a

pronounced positive spatial gradient towards the northeast of the study area. In practice, when

the cod population size decreases, the local CPUEs in the northeastern decrease more than in

the rest of the Baltic Sea. Accordingly, local CPUEs tend to increase more in the northeastern

part of the distribution when the cod population size increases (Fig 3b). The interaction term

between oxygen and salinity shows that when the salinity is low, the effect of oxygen is weak,

and salinity is the limiting factor; conversely, when the concentration of oxygen is low, the

effect of salinity is weak, and oxygen is the limiting factor (Fig 3c). Depth shows a clear non-

linear effect on cod CPUE: the effect increased rapidly until around 50 meters, peaked at

around 70 meters, and slightly decreased thereafter (Fig 3d). The effect of the reproductive vol-

ume (RV) is slightly confounded by a tendency to overfit the data, but sensitivity analysis on

the level of smoothing confirms the positive relationship with the cod CPUE three years later

(Fig 3e). The effect drops for RV> 270 km3 but this is driven by the last high value of RV. By

removing one covariate at a time from the best model and calculating the relative decrease in

the deviance explained, we evaluated the contribution of each variable to explain the local

CPUE of cod in the best model (S1 Table). The spatial density-dependent term is by far the

most relevant factor with a drop of almost 32% in the deviance explained by the model exclud-

ing this term. The second and third terms by relevance are the geographical coordinates and

depth with a contribution to the variance of only 8% and 7% respectively. The terms that

included the hydrographic variables appear as the less influential with a contribution of 5% or

less.

The estimated dispersion parameter (θ) = 268 suggests that solid overdispersion exists in

our data. We also plotted averaged squared residuals and fitted values for categories 0< E(Y)
< 2, 2< E(Y)< 4 and so on, to diagnose the linear relationship between variance and mean,

typical of a quasi-Poisson distribution (Fig 3f). The diameters of the circles are proportional to

the number of samples for each category, and all categories have at least 10 samples. The vario-

gram of the residuals showed no spatial auto-correlation in the residuals of the best model

(data not shown).

Using the fitted best model (model.1), we predicted cod distribution for five different peri-

ods characteristic for the population dynamics observed in the last 30 years (Fig 4). In the early

1980s, during a period of high population size (Fig 4b), our model predicted generally higher

local densities and a wider spatial distribution that extended across most of the study area. In

the mid 1980s the population size had an abrupt decrease to levels comparable with those

observed in the early 1970s (Fig 4a and 4c), and the model predicted an overall reduction of

local densities, but with a major decrease observed in the northeast (i.e. SD 28). In the early

1990s (Fig 4d) the cod population size reached a historical minimum, and the model predicted

a further contraction in the distribution mainly towards the southwestern part of the study

area (i.e. SD 25). During the most recent years (Fig 4e), a moderate increase in the population

size produced minor expansion of the distribution towards the southeast (i.e. SD 26), but not

in the northern part of the study area (i.e. SDs 27 and 28).

We calculated a”habitat occupancy index” as the minimum area containing 95% of the esti-

mated abundance by year. The results showed that when cod population size was high, the

occupancy index was above 70%, while when the population decreased the habitat occupied

was reduced to 57% (Fig 5). After the 2005, a slight increase in the area occupied has occurred.

Spatio-temporal dynamics of Baltic Sea cod
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Fig 4. Predictions of cod spatio-temporal population distribution at different population levels. (a) 1970–1972

(hindcast), (b) 1982–1984, (c) 1986–1988, (d) 1991–1992, (e) 2006–2007. (f) Baltic cod population size (ages 3+). Red and

blue colors indicate high and low predicted CPUEs, respectively.

doi:10.1371/journal.pone.0172004.g004

Fig 5. Habitat occupancy index. Minimum area containing 95% of the estimated cod abundance by year.

doi:10.1371/journal.pone.0172004.g005

Spatio-temporal dynamics of Baltic Sea cod
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Discussion

Our study shows, using for the first time a long time-series of bottom trawl survey data, the

large changes in spatial distribution experienced by the Eastern Baltic cod during the past

three decades. Population densities were high in large areas of the central Baltic in the first

years of our time series up to mid-1980s, whereas thereafter the population has shown a pro-

gressive contraction into the southwest area (i.e. SD 25). Our statistical analyses suggest that

during the past three decades the geographical distribution of the Baltic cod population has

been driven by both density-dependent processes and hydrographic conditions, and intraspe-

cific interactions played a more relevant role.

We found that a model containing the spatially variant density-dependent term, where the

effect of cod population size varies over the Baltic landscape, was able to best capture the spa-

tio-temporal dynamics of the Baltic cod, and improve the predictability of the model. This

model revealed that cod density in the northeastern area decreased more than in the rest of the

Baltic Sea during the rapid decrease of the population size in the 1980s, resulting in a spatial

contraction of the cod population after the late 1980s into the southwest area. This was pic-

tured by the time-series of area occupied in SDs 25–28, which was reduced of approximately

20%. This spatial contraction may have been facilitated by a decrease in salinity in the northern

areas [31], with cod therefore likely leaving these areas when the salinity had become too low.

However, the salinity in SD 28 increased again after the late 1980s, but without a re-expansion

of the cod population to the north, likely because of the lasting low population size. After 2005,

the oxygen level at the main average depth of cod distribution has always been higher in the

northern areas and therefore hardly triggering the contraction of cod population into the

south. Our results also revealed a minor positive effect of the regional (i.e. within a SD) repro-

ductive volume on the local cod densities three years later, supporting the idea that individuals

born in a SD tend to remain in that area. Accordingly, the contraction of the cod population

into southwest areas (i.e. SD 25) after the early 1980s could have been also related to the loss of

suitable spawning habitats (in terms of water masses with oxygen and salinity appropriate for

spawning and ensuring egg survival) in the northern SDs [58]. The partial effects of our model

also revealed that cod density was the highest at oxygen concentrations of 3–6 ml/l and salinity

levels of 10–12 psu, indicating these as the preferred hydrological conditions for adult cod at

the local scale.

We found that spatial density-dependence was more important to explain local cod density

than the regional reproductive volume (acting on recruitment) and the local hydrological con-

ditions (acting on habitat choice). As density increases in a habitat, per-capita resources

become scarce, and individuals are expected to move towards marginal, less suitable habitats,

but favored by lower local competition [59]. Different theoretical models have been proposed

to describe changes in species density and distribution in relation to variations in their global

abundance [25, 60], and a large variety of density-dependent spatial dynamics has been sup-

ported by empirical data on several marine and terrestrial species (e.g. see [19, 61–63]). Vari-

ability in the density-dependent responses have been found among different fish populations,

but also within the same population under different conditions [14], and throughout the

ontogeny [22]. The quality and richness of the data we analysed, and the wide range of envi-

ronmental conditions, and population size experienced by the Eastern Baltic cod, during the

time period investigated, allowed to disentangle the effect of the major drivers of its spatio-

temporal dynamics, and suggested that density-dependent habitat selection may play a major

role for this population.

However, a positive relationship between population size and distribution does not prove

per se density-dependent habitat selection because the relationship could be due to a common
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factor driving both population abundance and area occupied [23]. For the Baltic Sea cod, for

example, hydrological variations (e.g. in salinity and oxygen) influence both recruitment [45]

and spatial distribution (our study). However, in presence of density-dependent habitat selec-

tion, the fish distribution should result in average fitness being equal between habitats [64]. In

marine fishes, proxies for growth, such as size-at-age or condition, are life-history traits com-

monly considered good indicators of the individual reproductive success and thus fitness [65,

66]. Therefore, spatial variation in size-at-age or body condition should be a reasonable test of

the theory [23]. In the case of the Baltic cod, the individual condition has shown large varia-

tions during the past thirty years, but these variations were very similar in all the areas of the

central Baltic Sea (S4 Fig). Moreover, during the late 1970s-early 1980s, at the highest level of

cod population size, the cod mean size-at-age was low [37], whereas after the stock crashed

size-at-age increased, indicating density-dependent growth due to high competition among

cod individuals. Under these circumstances, cod might tend to search food over a wider area

in the Baltic landscape and therefore expand its spatial distribution. As an evidence of this

expectation, during the late 1970s and early 1980s, when the cod population size peaked, the

cod population was distributed in areas usually not occupied by this species, as the Gulf of

Riga (SD 28.1) where cod is not able to recruit due to unfavorable hydrological conditions

[29]. In this period, high commercial landings of cod were also reported from other marginal

areas, such as the Bothnian Sea and Gulf of Finland (ICES official annual reports, Fig 2), sug-

gesting a cod expansion into wider areas of the Baltic landscape at high population sizes. Our

model predicted high CPUEs in the northern areas of the Central Baltic (SDs 27 and 28) dur-

ing the early 1980s proving the capability to pick the expansion of the population distribution

into northern areas in this period. On the other hand, at low population sizes, the individuals

concentrate in the preferred more marine environment encountered in the south-western

areas of the Baltic (SD 25).

Since 2007 the cod population has shown a slight recovery from the very low abundances

estimated during the period 1990–2006 [67]. Therefore, according to our model an expansion

of the distribution should have occurred after 2006. Data from commercial fisheries (both in

terms of landings and landings-per-unit-effort) show a sharp proportional increase in cod

landings in SD 26 with respect to SD 25 after 2005, suggesting an eastward expansion of the

population (Fig 6). The expansion seems however not to have stretched into more northern

areas (e.g. SDs 27 and 28). Currently we can only speculate about these observations, even if

the lack of strong expansion northwards after the 2005 could be due to 1) the greatly increased

extent of hypoxic and anoxic bottoms in northern SDs [68] and/or 2) the currently very low

body condition of cod individuals potentially reducing the energy available for extensive

movements, as shown for example for herring [69] and according to bioenergetic models for

Atlantic cod [70]. Moreover, one part of the relation between population size and spatial distri-

bution revealed by our model could be explained by movements in the offshore-coast direction

(i.e. also within the same SD) and not necessarily only over larger north-south or east-west

spatial scales across SDs [32]. This could explain the fact that the Baltic International Trawl

Survey (BITS), not covering the most coastal areas (the survey covers mainly the areas deeper

than 20 m), does not reveal trends in the proportion of cod caught between SDs as clear as the

commercial catches (Fig 6). Moreover, we cannot exclude that the lack of a recent expansion

into northern areas is due to the loss of spawning sub-components own to the intensive and

persisting fishing occurred in the 1980s and 1990s [46].

In our analyses we did not include potentially important factors affecting cod distribution,

such as prey distribution and fishing pressure. However, Casini et al. [31] showed that sprat

density has increased in the northern Baltic Sea during the past twenty years, whereas it

decreased in the southern areas. Herring has also shown an increased abundance in the

Spatio-temporal dynamics of Baltic Sea cod
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northern areas of the central Baltic Sea during the study period [58]. These observations sug-

gest that the contraction of the cod population in the southern Baltic since the early 1980s can-

not be explained by changes in the pelagic prey distribution. Long-term spatially-resolved data

on fishing pressure are not currently available and could not be included in our analyses, but if

available in the future they should be taken into account in further analyses on the Baltic cod

spatial distribution to understand the fishery effect on cod at different spatial scales [13].

Our results support previous findings that the spatiotemporal dynamics of fish populations

are better explained when both density-dependent and density-independent processes are

simultaneously accounted for [17, 18]. Our study illustrates also the importance of considering

the spatial dimension in the analysis of fish populations dynamic because of the strong spatial

component in the interplay between intraspecific interactions and environmental forcing. In a

recent study, [29] provided evidence that the presence of cod in the northern areas of the Cen-

tral Baltic produced a cod spillover into the adjacent Gulf of Riga (Fig 1) with direct and indi-

rect top-down effects on all the trophic levels of the local ecosystem. Also in the Bothnian Sea

the occasional presence of cod when the population peaked has been suggested to trigger a

top-down control of the local commercially exploited herring population [71]. Similarly, the

Fig 6. Indicator of the recent spatial development of the cod population. Time series of cod commercial

landings (proportion of landings in SDs 25–26 caught in SD 26; data from ICES stock assessment working

group reports), cod commercial landings per unit of effort (LPUE in kg landed/hour, ratio SD 26 / SD 25; data

from the Scientific, Technical and Economic Committee for Fisheries of the European Commission) and

survey catch per unit of effort (CPUE in kg/h, ratio SD 26 / SD 25; data from ICES DATRAS database).

doi:10.1371/journal.pone.0172004.g006
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decrease of cod in coastal areas may have contributed to the recent increases in three-spined

stickleback observed in the Baltic Sea, with vast secondary effects on coastal food webs [32,

72]. Therefore understanding and predicting the changes in cod spatial distribution is of cru-

cial importance for fisheries management and the biological conservation of the whole Baltic

Sea meta-ecosystem. Studying the changes in spatial distribution and area occupied by species

is also considered fundamental in biodiversity conservation, as underlined for example by the

EU Marine Strategy Framework Directive which has identified species area occupancy as one

of the key indicators of ecosystem state [27].
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